Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
J Community Hosp Intern Med Perspect ; 10(6): 514-520, 2020 Oct 29.
Article in English | MEDLINE | ID: covidwho-900307

ABSTRACT

BACKGROUND AND OBJECTIVES: COVID-19 is a global pandemic. In our study, we aimed to utilize the hematological parameters in predicting the prognosis and mortality in COVID-19 patients. MATERIALS AND METHODS: A retrospective, observational study was conducted to include all the admitted patients (n = 191) having COVID-19 Polymerase chain reaction (PCR) positive, and evaluated those for prognosis and disease outcome by utilizing several biochemical and hematological markers. RESULTS: Amongst the patients admitted in the ward versus in the intensive care unit (ICU), there were significant differences in mean hemoglobin (P = 0.003), total leukocyte count (P = 0.001), absolute neutrophil and lymphocyte counts (P < 0.001), absolute monocyte count (P = 0.019), Neutrophil-to-Lymphocyte ratio (NLR) and Lymphocyte-to-Monocyte ratio (LMR) (P < 0.001), Platelet-to-Lymphocyte ratio (PLR) and Lymphocyte-to C-reactive protein ratio (LCR) (P = 0.002), and C-reactive protein (CRP) levels (P < 0.001). Amongst the deceased patients, there was significant leukocytosis (P = 0.008), neutrophilia and lymphopenia (P < 0.001), increased NLR (P = 0.001), decreased LMR (P < 0.001), increased PLR (p = 0.017), decreased LCR (p = 0.003), and elevated CRP level (P < 0.001). A receiver operating characteristic curve obtained for the above parameters showed NLR (AUC: 0.841, PPV: 83.6%) and PLR (AUC: 0.703, PPV: 81.8%) for ICU patients, while NLR (AUC: 0.860, PPV: 91.1%) and PLR (AUC: 0.677, PPV: 87.5%) for the deceased patients had significant accuracy for predicting the disease severity of COVID-19 in comparison to survivors. CONCLUSION: The inflammatory markers and hematological indices are a good guide for predicting the severity and disease outcome of coronavirus disease. NLR and PLR are elevated in severe disease while LMR and LCR are inversely correlating with disease severity.

2.
Cureus ; 12(8): e10054, 2020 Aug 26.
Article in English | MEDLINE | ID: covidwho-808939

ABSTRACT

Background and objectives Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the pathogen responsible for the coronavirus disease 2019 (COVID-19) pandemic. The disease mainly affects the respiratory system of the patient, in particular, the lungs, which leads to patients presenting with acute respiratory distress syndrome and acute respiratory failure, with 5-15% of patients requiring observation in the intensive care unit (ICU) with respiratory support in the form of ventilation. This study was aimed at identifying the role of biochemical markers in the risk stratification of invasive and non-invasive ventilation of hospitalized COVID-19 patients. Materials and methods The study was conducted as a prospective, observational study of all admitted COVID-19 patients. A comparative analysis was performed of the survivors who were on invasive versus (vs) non-invasive ventilation and the non-survivors similarly. After computing the descriptive statistics, a multinomial logistic regression model was applied to obtain an unadjusted odds ratio (OR) at 95% confidence interval (CI), with Hosmer-Lemeshow (HL) goodness-of-fit test used to predict the fitness of the data. Kaplan-Meier survival curves were obtained for each of the laboratory investigations predicting survival along with the intensive care stay and invasive ventilation. A log-rank test was carried out to compare the survival distributions. Results A total of 373 included patients in the study had a mean age of 52.78 ± 15.76 years with females younger than males, and indifference amongst invasive vs non-invasively ventilated (p=0.821). Females were slightly more prone to invasive ventilation (p=0.097). Overall, 39% of the subjects did not need respiratory support, while 13% were on a ventilator, 16% on bilevel positive airway pressure/continuous positive airway pressure (BiPAP/CPAP), and 31% on supplemental oxygen therapy. Among the laboratory markers, mean hemoglobin was evidently lower in the invasive group, leukocytosis and thrombocytopenia were present in both invasively ventilated and non-surviving patients, while neutrophilia and lymphocytopenia were statistically indifferent among the mode of ventilation. Elevated urea, creatinine, and sodium were also significantly deranged laboratory markers amongst the invasively ventilated group. C-reactive protein (CRP) and lactate dehydrogenase (LDH) were elevated significantly in the invasive group, while serum ferritin was more frequently raised in the non-invasively ventilated group. Procalcitonin (PCT) was significantly associated with invasive ventilation as opposed to the non-invasive group. D-dimer was equally raised in both the groups at admission but significantly elevated in the invasive group at discharge. A multinomial regression model signified D-dimer (OR: 16.301), hypernatremia (OR: 12.738), creatinine (OR: 12.589), urea (OR: 12.576), and LDH (OR: 12.245) most significantly associated with death, while those for invasive ventilation were D-dimer (OR: 8.744), hypernatremia (OR: 4.532), PCT (OR: 3.829), neutrophilia (OR: 3.804), leukocytosis (OR: 3.330), and serum urea (OR: 3.312). Kaplan-Meier curves conclude total leucocyte count (TLC), neutrophils, lymphocytes, urea, creatinine, sodium, CRP, LDH, PCT, and D-dimer all significantly contributing to an early death. Conclusion The most significant marker for mortality was D-dimer, followed by serum sodium, urea/creatinine, LDH, ICU stay, and invasive ventilation.

SELECTION OF CITATIONS
SEARCH DETAIL